TOCON_E1

SiC based UV-Index photodetector with integrated amplifier

GENERAL FEATURES

1/4

Properties of the TOCON_E1

- SiC based UV-Index photodetector in TO5 housing with diffusor
- spectral response compliant to CIEo87 / DIN5o50
- o... 5 V voltage output
- peak wavelength at 280 nm
- 1 UVI results a voltage of approx. 1,7 V attenuator needed
- Applications: UV-Index measurement with very small error <+-3%

What is a TOCON?

A TOCON is a 5 Volt powered UV photodetector with integrated amplifier converting UV radiation into a o...5V voltage output. The V_{out} pin of the TOCON can be directly connected to a controller, a voltmeter or any other data analyzing device with voltage input.

Information about the UV-Index (UVI)

The UV-Index is an international standard measurement of how strong the ultraviolet (UV) radiation from the sun is at a particular place on a particular day. It is a scale primarily used in daily forecasts aimed at the general public. The UV-Index is calculated by integrating the sun's UV spectrum multiplied with the Erythema action curve (see spectral responsivity). That integral is divided by 25 mW/m² to generate a convenient index value, which becomes essentially a scale of o to 10. The Erythema action curve is a wavelength resolved measure of the sunburn danger. It is maximised at 297nm (UVB) and then strongly decreases towards UVA radiation.

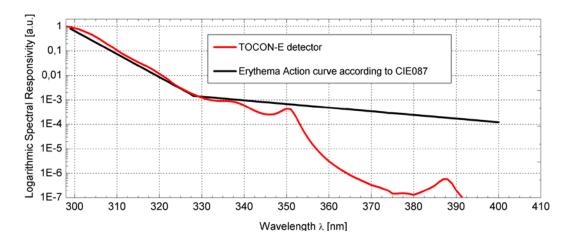
Literature: A. F. McKinlay and B. L. Diffey, "A reference action spectrum for ultraviolet induced erythema in human skin" CIE Journal, 6-1, 17-22 (1987)

NOMENCLATURE

TOCON_	ABC, A, B, C, blue or GaP	1 10
	Spectral response	Irradiance limits ($V_{supply}=5V$, $\lambda=\lambda_{peak}$)
	ABC = broadband	1 = 1,8 pW/cm ² 1,8 nW/cm ²
	$\lambda_{\text{max}} = 290 \text{ nm} \lambda_{\text{S10\%}} = 227 \text{ nm} \dots 360 \text{ nm}$	2 = 18 pW/cm ² 180 nW/cm ²
	A = UVA $\lambda_{\text{max}} = 331 \text{nm} \lambda_{\text{S10\%}} = 309 \text{nm} \dots 367 \text{nm}$	3 = 180 pW/cm ² 1,8 μW/cm ²
	B = UVB	$4 = 1.8 \text{ nW/cm}^2 \dots 18 \mu\text{W/cm}^2$
	$\lambda_{\text{max}} = 280 \text{ nm}$ $\lambda_{\text{S10\%}} = 243 \text{ nm} \dots 303 \text{ nm}$	5 = 18 nW/cm ² 18ο μW/cm ²
	C = UVC $\lambda_{\text{max}} = 275 \text{ nm} \lambda_{\text{S}_{10}\%} = 225 \text{ nm} \dots 287 \text{ nm}$	6 = 180 nW/cm ² 1,8 mW/cm ²
		7 = 1,8 μW/cm ² 18 mW/cm ²
	Blue $\lambda_{\text{max}} = 445 \text{ nm} \lambda_{\text{S10\%}} = 390 \text{ nm} \dots 515 \text{ nm}$	8 = $18 \mu\text{W/cm}^2$ 180mW/cm^2
	Gap	9 = 180 μW/cm ² 1,8 W/cm ²
	$\lambda_{\text{max}} = 445 \text{ nm}$ $\lambda_{\text{S10\%}} = 190 \text{ nm} \dots 570 \text{ nm}$	10 = 1,8 mW/cm ² 18 W/cm ²
	E = UV-Index spectral response according to CIEo87	2 = 0 UVI 30 UVI

sglux GmbH | Max-Planck-Str. 3 | D-12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de

TOCON_E1


SiC based UV-Index photodetector with integrated amplifier

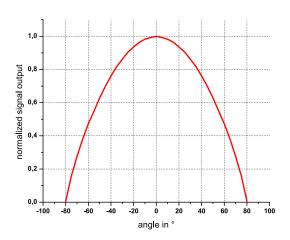
SPECIFICATIONS

2/4

Parameter	Symbol	Value	Unit
Spectral Characteristics			
Approx. Sensitivity (unit is not calibrated)	S_{max}	1,7	V/UVI
Visible Blindness $(S_{max}/S_{>405nm})$	VB	> 10 ¹⁰	-
General Characteristics (T=25°C, _{Vsupply} =+5 V)			
Supply Voltage	V_{Supply}	2,5 5	V
Saturation Voltage	V_{Sat}	V _{Supply} - 5%	V
Dark Offset Voltage	V_{Offset}	50	μV
Temperature Coefficient at Peak	T_{c}	< -0,3	%/K
Current Consumption	1	150	μΑ
Bandwidth (-3 dB)	В	15	Hz
Risetime (10-90%)	t_{rise}	0,182	S
(other risetimes on request)			
Maximum Ratings			
Operating Temperature	T_{opt}	−25 +85	°C
Storage Temperature	T_{stor}	-40 +100	°C
Soldering Temperature (3s)	T_{sold}	300	°C

NORMALIZED SPECTRAL RESPONSIVITY

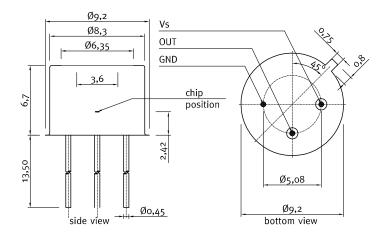
sglux GmbH | Max-Planck-Str. 3 | D-12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de

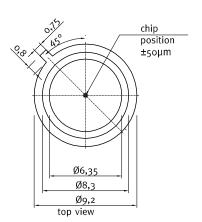

TOCON_E1

SiC based UV-Index photodetector with integrated amplifier

FIELD OF VIEW

3/4


Measurement Setup:


lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm

distance second aperture to detector: 93 mm

pivot level = top surface of the detector window

DRAWING

TOCON E1

SiC based UV-Index photodetector with integrated amplifier

APPLICATION N

4/4

APPLICATION NOTE FOR TOCONS

The TOCONs need a supply voltage of $V_{\text{supply}}=2.5...5V_{DC}$ and can be directly connected to a controller or voltmeter. Please note that the theoretic maximum signal output is always a little less (approx. 5%) than the supply voltage. To learn more about perfect use of the TOCONs please refer to the TOCON FAQ list published at www.sglux.com.

CAUTION! Wrong wiring leads to destruction of the device.

For easy setup of the device please ask for a TOCON starter kit.

Miniature steel housing with M12x1 thread for the TOCON series

- Optional feature for all TOCON detectors
- Robust stainless steel M12x1 thread body, length 32 mm
- Integrated sensor connector (Binder 5-Pin plug) with 2m connector cable
- Easy to mount and to connect

Miniature PTFE housing with M12x1 thread for the TOCON series

- Optional feature for all TOCON detectors without concentrator lens
- Teflon (PTFE) M12x1 thread body, length 31 mm
- Wide field of view, dirt-repellant, water proof at wet side (IP 68)
- Integrated sensor connector (Binder 5-Pin plug) with 2m connector cable
- Easy to mount and connect, cleanable

The PTFE housing reduces the signal output by approx. 95%. Please consider this while selecting the TOCON's sensitivity range.

Plastic probes

- Optional feature for all TOCON detectors
- UV probes in small plastic housings with a TOCON inside
- Customized housings available
- Easy to mount and to connect
- Integrated sensor connector (Binder 5-Pin plug)
- Cable available

Water pressure proof TOCON housing

- Optional feature for all TOCON detectors without concentrator lens
- G1/4" thread, 10 bar water pressure proof
- Customized housings available
- Easy to mount and to connect
- Integrated sensor connector (Binder 5-Pin plug)
- Cable available